
Trinity: A Distributed Graph 
Engine on a Memory Cloud 

By Shao et al.
Presented by Ruoxi Zhang

CS-848 - February 26, 2019



Reference

§ B. Shao, H. Wang, Y. Li. Trinity: a 
distributed graph engine on a memory 
cloud, Proc. ACM SIGMOD International 
Conference on Management of Data, pages 
505-516, 2013.

2



Graphs 
& 

Applications

3



Online
Query 

Processing

Offline
Graph 
Analytics

Requires low latency

Graph exploration
Random access

e.g., BFS, subgraph 
matching, etc.

Requires high throughput

Iterative, batch processing
Parallel computing

e.g., PageRank, betweenness
computation, etc.

4



Why Trinity?

Characteristics of graph computation 
• Fast random data access

Improve performance 
• Keeping data in main memory

The scale of data 
• Distributed parallel computation 

5



Trinity
§ Trinity is a general purpose graph engine over a 

distributed memory cloud. 

§ Online query processing + offline graph analytics

§ The belief of all-in-memory solutions
§ High-speed network
§ Low price DRAM

§ No comprehensive built-in graph computation modules
§ Flexible data
§ Computation modeling capability

6



Trinity Cluster

7



Distributed Memory Cloud

§ Partition memory space into 2p (> m) 
trunks.
§ Trunk level parallelism 
§ Efficient hashing

§ Basic data structure: key-value pairs
§ Key: 64-bit globally unique 

identifiers (UID)
§ Value: blobs of arbitrary length
§ Metadata: spinlock

8

Trinity System Layers 



Partitioning & Addressing
§ [Scalable] Hashing mechanism
§ Trunk	number	to	machine	ID

§ UID → 𝑝	bit	𝑖 ∈ 0, 2: − 1

§ Addressing table

§ [Fault-tolerant] memory trunks 
are backed up in TFS (Trinity 
File System).

§ Hash again to find the value
§ Use the hash table in trunk
§ UID → offset	&	size 9



10Circular Memory Management

§ Given: a large 
number of key-value 
pairs; size may 
increase or decrease

§ Goal: avoid memory 
gaps

§ Append head
§ Defragmentation

daemon



Data Model
§ Cell = value + schema 

§ a node (or a rich edge)

§ TSL
§ Object-oriented cell manipulation

§ Cell accessor
§ Data integration

§ Transparent query processing
§ Automatic data conversion

§ System extension
§ Models cell schema
§ Models message passing

11

Trinity System Layers 



§ Online queries processing (e.g., traversal & subgraph matching)
§ Fast random access & parallel computing, no index

§ Offline graph analytics (e.g., PageRank)
§ Restricted vertex-centric computation model
§ Aggregate local answers & probabilistic inference

§ Higher performance and lower memory usage 

12Computation Paradigms (1) 

PBGL, a parallel graph 
processing library

BFS

Giraph, offline system PageRank



§ Message passing optimization
§ Create a bipartite partition of the 

local graph
§ Buffer messages from hub 

vertices 
§ Obtain messages from vertices in 

other partitions on demand
§ Given a data access pattern: 

13Computation Paradigms (2) 

Vertices in a partition 
currently scheduled to run 

Other vertices



14Fault Tolerance

§ Maintain a primary replica of the shared addressing 
table on a leader machine

§ Heartbeat messages to detect machine failures

§ Fault recovery varies by computation models
§ BSP (batch synchronous processing): checkpoints
§ Asynchronous: periodical interruption



15Partition

§ Divide a graph into many equal size parts, such that the 
number of edges among them is minimized. 

§ Goal: load balance + reduce communication overhead

§ Billion-node graph partitioning is an unsolved problem 
on general-purpose graph platforms. 

§ Multi-level partitioning algorithm 



Summary

16

§ General purpose – algorithms & graphs 
& computation models

§ Large scale – billions of nodes
§ Distributed – instead of storing it 

centrally on a single machine
§ Memory-based – keep the graph in 

memory, at least the topology

Trinity is a … graph engine.

Generality

Large 
ScaleGraph



§ Zhao Sun, Hongzhi Wang, Bin Shao, Haixun Wang, and Jianzhong
Li, Efficient Subgraph Matching on Billion Node Graphs, VLDB 
2012.

§ Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and 
Zhongyuan Wang, A Distributed Graph Engine for Web Scale 
RDF Data, VLDB 2013.

§ Wanyun Cui, Yanghua Xiao, Haixun Wang, Ji Hong, and Wei 
Wang, Local Search of Communities in Large Graphs, SIGMOD 
2013.

17Related Publications



§ What is unique about in-memory engine design compared to disk-
based engines?

§ Why wouldn’t regular disk-based databases adopt the same 
techniques?

§ In reality, Trinity does not provide ACID transaction support. 
If it is added as a feature, what is the trade-off?

§ What are the advantages and disadvantages of a general-purpose 
system?

18Discussion


