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Requires low latency

Graph exploration
Random access

e.g., BFS, subgraph 
matching, etc.

Requires high throughput

Iterative, batch processing
Parallel computing

e.g., PageRank, betweenness
computation, etc.
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Why Trinity?

Characteristics of graph computation 
• Fast random data access

Improve performance 
• Keeping data in main memory

The scale of data 
• Distributed parallel computation 
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Trinity
§ Trinity is a general purpose graph engine over a 

distributed memory cloud. 

§ Online query processing + offline graph analytics

§ The belief of all-in-memory solutions
§ High-speed network
§ Low price DRAM

§ No comprehensive built-in graph computation modules
§ Flexible data
§ Computation modeling capability
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Trinity Cluster
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Distributed Memory Cloud

§ Partition memory space into 2p (> m) 
trunks.
§ Trunk level parallelism 
§ Efficient hashing

§ Basic data structure: key-value pairs
§ Key: 64-bit globally unique 

identifiers (UID)
§ Value: blobs of arbitrary length
§ Metadata: spinlock
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Trinity System Layers 



Partitioning & Addressing
§ [Scalable] Hashing mechanism
§ Trunk	number	to	machine	ID

§ UID → 𝑝	bit	𝑖 ∈ 0, 2: − 1

§ Addressing table

§ [Fault-tolerant] memory trunks 
are backed up in TFS (Trinity 
File System).

§ Hash again to find the value
§ Use the hash table in trunk
§ UID → offset	&	size 9



10Circular Memory Management

§ Given: a large 
number of key-value 
pairs; size may 
increase or decrease

§ Goal: avoid memory 
gaps

§ Append head
§ Defragmentation

daemon



Data Model
§ Cell = value + schema 

§ a node (or a rich edge)

§ TSL
§ Object-oriented cell manipulation

§ Cell accessor
§ Data integration

§ Transparent query processing
§ Automatic data conversion

§ System extension
§ Models cell schema
§ Models message passing
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§ Online queries processing (e.g., traversal & subgraph matching)
§ Fast random access & parallel computing, no index

§ Offline graph analytics (e.g., PageRank)
§ Restricted vertex-centric computation model
§ Aggregate local answers & probabilistic inference

§ Higher performance and lower memory usage 

12Computation Paradigms (1) 

PBGL, a parallel graph 
processing library

BFS

Giraph, offline system PageRank



§ Message passing optimization
§ Create a bipartite partition of the 

local graph
§ Buffer messages from hub 

vertices 
§ Obtain messages from vertices in 

other partitions on demand
§ Given a data access pattern: 

13Computation Paradigms (2) 

Vertices in a partition 
currently scheduled to run 

Other vertices



14Fault Tolerance

§ Maintain a primary replica of the shared addressing 
table on a leader machine

§ Heartbeat messages to detect machine failures

§ Fault recovery varies by computation models
§ BSP (batch synchronous processing): checkpoints
§ Asynchronous: periodical interruption



15Partition

§ Divide a graph into many equal size parts, such that the 
number of edges among them is minimized. 

§ Goal: load balance + reduce communication overhead

§ Billion-node graph partitioning is an unsolved problem 
on general-purpose graph platforms. 

§ Multi-level partitioning algorithm 



Summary
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§ General purpose – algorithms & graphs 
& computation models

§ Large scale – billions of nodes
§ Distributed – instead of storing it 

centrally on a single machine
§ Memory-based – keep the graph in 

memory, at least the topology

Trinity is a … graph engine.

Generality

Large 
ScaleGraph
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§ What is unique about in-memory engine design compared to disk-
based engines?

§ Why wouldn’t regular disk-based databases adopt the same 
techniques?

§ In reality, Trinity does not provide ACID transaction support. 
If it is added as a feature, what is the trade-off?

§ What are the advantages and disadvantages of a general-purpose 
system?
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