

Reference

= B. Shao, H. Wang, Y. Li. Trinity: a
distributed graph engine on a memory
cloud, Proc. ACM SIGMOD International
Conference on Management of Data, pages
505-516, 2013.

Ak .,om!,
SN N
SIS0

.\W.\«”‘«\A‘\’“&‘\
A

18 s D

e AN Y4
S EOBENTEFLKS
£ .m_%ownsm? Y%

. Lancel

=
5L

\

—~
> .&a‘w
t

)
3

.

!

o

/7

{77
| /17

-

\
A
e dy~SVys

(e

F

\

N
Y

2
%

>

=

P TSGR

8
S

1011S
\N

1cat

‘“ :

Appl

Online

Query
Processing

Requires low latency

Graph exploration

Random access

e.g., BFS, subgraph
matching, etc.

Offline 4
Graph
Analytics

Requires high throughput

Iterative, batch processing
Parallel computing

e.g., PageRank, betweenness
computation, etc.

Why Trinity?

Characteristics of graph computation

 Fast random data access

Improve performance

- Keeping data in main memory

The scale of data

 Distributed parallel computation

Trinity 1s a general purpose graph engine over a
distributed memory cloud.

" Online query processing + offline graph analytics

The belief of all-in-memory solutions
= High-speed network

= Low price DRAM

No comprehensive built-in graph computation modules
= Flexible data
= Computation modeling capability

Client

Client

Lib

Lib
Client =
Lib =0,
N
Trinity
Proxy

Lib

Client

Lib

Client

< Client
O= Lib
A
Trinity
Proxy

Slaves

Proxies

Clients

Distributed Memory Cloud

Trinity System Layers

Graph Operations

GetlInlinks(), Outlinks.Foreach(...), etc

= Partition memory space into 2P (> m)
trunks.

= Trunk level parallelism

Graph Model
= Efficient hashing

Trinity Specification Language
= Basic data structure: key-value pairs

~_Memory Cloud <—/ = Key: 64-bit globally unique
(Distributed Key-Value Store) , .
1dentifiers (UID)
Distributed Message ,
Memory Passing = Value: blobs of arbitrary length
Storage Framework :
S = Metadata: spinlock

memory cloud = fast random access > fast graph exploration

E hash !

64-bit UID

p-bit
hash code

machine 0

machine 1

machine 2

machine m

Addressing

Table

> cell bytes| |

i)
Trinity File System
L
| | 3
| Trinity
| Slave

Memory Trunk

UID |Offset| Size
01... 321 123
10... 423 211

I

A

Y |
4|jMemory
Trunk

Memory Trunks

Partitioning & Addressing

= [Scalable] Hashing mechanism

" = Trunk number to machine ID

e

—

= UID - p biti € [0,27 — 1]
= Addressing table

= [Fault-tolerant] memory trunks

are backed up in TFS (Trinity
File System).

= Hash again to find the value
= Use the hash table in trunk
= UID — offset & size

9

Tail

Circular Memory Management

Head

TrunkPtr F—Committed Memory—»| TrunkEnd

\

v

(a) |[Reserved Memory

Reserved Memory

Allocation |
rp—p

A

Append Head
Memory Trunk Memory Space

Tail Defragmentation
|
[

»

- -
o

(b) |Committed Memory

Reserved Memory

Committed Memory

10

Given: a large
number of key-value
pairs; size may
Increase or decrease

Goal: avoid memory
gaps

Append head

Defragmentation
daemon

Data Model !

Trinity System Layers

Graph Operations

GetlInlinks(), Outlinks.Foreach(...), etc

Graph Model

Trinity Specification Language "1

Memory Cloud
(Distributed Key-Value Store)

Distributed
Memory
Storage

Message
Passing
Framework

= Cell =value + schema

= a node (or a rich edge)

= TSL

= Object-oriented cell manipulation
= Cell accessor

= Data integration
= Transparent query processing
= Automatic data conversion

" System extension
= Models cell schema

= Models message passing

12

Computation Paradigms (1)

= Online queries processing (e.g., traversal & subgraph matching)

= Fast random access & parallel computing, no index
= Offline graph analytics (e.g., PageRank)
= Restricted vertex-centric computation model

= Aggregate local answers & probabilistic inference

= Higher performance and lower memory usage

PBGL, a parallel graph BFS
processing library

Giraph, offline system PageRank

13

Computation Paradigms (2)

= Message passing optimization

= Create a bipartite partition of the

u
o local graph
8 8 = Buffer messages from hub
° Y vertices
8 8 = Obtain messages from vertices in
Y 8 o other partitions on demand
o o :
o o = (Glven a data access pattern:
o
© Other vertices
UID
neighbors f
attributes
Vertices in a partition local variables UID
currently scheduled to run message message

14

Fault Tolerance

= Maintain a primary replica of the shared addressing
table on a leader machine

= Heartbeat messages to detect machine failures
= Fault recovery varies by computation models

= BSP (batch synchronous processing): checkpoints

= Asynchronous: periodical interruption

Partition "

= Divide a graph into many equal size parts, such that the
number of edges among them 1s minimized.

= (Goal: load balance + reduce communication overhead

= Billion-node graph partitioning is an unsolved problem
on general-purpose graph platforms.

= Multi-level partitioning algorithm

16

Summary

= General purpose — algorithms & graphs
& computation models

= Large scale — billions of nodes

Generality

= Distributed — instead of storing it
centrally on a single machine

= Memory-based — keep the graph in
memory, at least the topology

Trinity is a ... graph engine.

17

Related Publications

= Zhao Sun, Hongzhi Wang, Bin Shao, Haixun Wang, and Jianzhong
Li, Efficient Subgraph Matching on Billion Node Graphs, VLDB
2012.

= Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and
Zhongyuan Wang, A Distributed Graph Engine for Web Scale
RDF Data, VLDB 2013.

= Wanyun Cui, Yanghua Xiao, Haixun Wang, J1 Hong, and Wei
Wang, Local Search of Communities in Large Graphs, SIGMOD
2013.

Microsoft®

ResearchAsia

. . 18
Discussion

= What is unique about in-memory engine design compared to disk-
based engines?

* Why wouldn’t regular disk-based databases adopt the same
techniques?

= In reality, Trinity does not provide ACID transaction support.
If 1t 1s added as a feature, what 1s the trade-off?

= What are the advantages and disadvantages of a general-purpose
system?

